Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantifying uncertainty induced by scattering angle distribution using maximum entropy method

Maruyama, Shuhei; Yamamoto, Akio*; Endo, Tomohiro*

Annals of Nuclear Energy, 205, p.110591_1 - 110591_13, 2024/09

JAEA Reports

MVP/GMVP version 3; General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa

JAEA-Data/Code 2016-018, 421 Pages, 2017/03

JAEA-Data-Code-2016-018.pdf:3.89MB
JAEA-Data-Code-2016-018-appendix(CD-ROM).zip:4.02MB
JAEA-Data-Code-2016-018-hyperlink.zip:1.94MB

In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants, etc. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions.

JAEA Reports

MVP/GMVP 2; General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

Nagaya, Yasunobu; Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki

JAERI 1348, 388 Pages, 2005/06

JAERI-1348.pdf:2.02MB

To realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two vectorized Monte Carlo codes MVP and GMVP have been developed at JAERI. MVP is based on the continuous energy model and GMVP is on the multigroup model. Compared with conventional scalar codes, these codes achieve higher computation speed by a factor of 10 or more on vector supercomputers. Both codes have sufficient functions for production use by adopting accurate physics model, geometry description capability and variance reduction techniques. The first version of the codes was released in 1994. They have been extensively improved and new functions have been implemented. The major improvements and new functions are (1) capability to treat the scattering model expressed with File 6 of the ENDF-6 format, (2) time-dependent tallies, (3) reaction rate calculation with the pointwise response function, (4) flexible source specification, etc. This report describes the physical model, geometry description method used in the codes, new functions and how to use them.

JAEA Reports

Production of MVP neutron cross section libraries based on the latest evaluated nuclear data files

Mori, Takamasa; Nagaya, Yasunobu; Okumura, Keisuke; Kaneko, Kunio*

JAERI-Data/Code 2004-011, 119 Pages, 2004/07

JAERI-Data-Code-2004-011.pdf:5.93MB

The 2nd version of code system, LICEM-2, has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system can process nuclear data in the latest ENDF-6 format and produce cross section libraries for MVP's capability of transport calculation at arbitrary temperature. By using the present system, MVP neutron cross section libraries have been prepared from the latest evaluations of JENDL, ENDF/B and JEFF data bases. This report describes the specification of MVP neutron cross section library, the details of each code in the code system, how to use them and MVP neutron cross section libraries produced with the code system.

JAEA Reports

Neutron cross section library production code system for continuous energy Monte Carlo code MVP; LICEM

Mori, Takamasa; Nakakawa, Masayuki; *

JAERI-Data/Code 96-018, 121 Pages, 1996/05

JAERI-Data-Code-96-018.pdf:3.38MB

no abstracts in English

JAEA Reports

Journal Articles

Benchmark calculation for deep penetration problem of 14MeV neutrons in iron

Mori, Takamasa; Nakakawa, Masayuki

Journal of Nuclear Science and Technology, 29(11), p.1061 - 1073, 1992/11

no abstracts in English

Journal Articles

Vectorization of continuous energy Monte Carlo method for neutron transport calculation

Mori, Takamasa; Nakakawa, Masayuki; *

Journal of Nuclear Science and Technology, 29(4), p.325 - 336, 1992/04

no abstracts in English

JAEA Reports

Effects of UO$$_{2}$$ fuel grain size on reactivity; Continuous energy Monte Carlo calculations

Sakurai, Y.*; Okuno, Hiroshi; Naito, Yoshitaka

JAERI-M 91-137, 35 Pages, 1991/09

JAERI-M-91-137.pdf:0.88MB

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1